DOI: http://dx.doi.org/10.18782/2320-7051.7088

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **6** (5): 1126-1133 (2018)

Research Article

Role of Arbuscular Mycorrhiza in Fruit Crops Production

S. M. Rajesh Naik^{1*}, M. Lakshmi Naga Nandini², Md. Aayesha Jameel³,

K. T. Venkataramana⁴ and L. Mukundalakshmi⁵

^{1,3}Department of fruit science, College of Horticulture,

Dr. YSRHU, Anantharajupeta- 516105, Andhra Pradesh, India

^{4, 5}Scientist, Department of Horticulture, Citrus Research Station, Tirupati, Dr. YSRHU

²Department of Plant Pathology, College of Horticulture, Dr YSRHU, Anantharajupeta- 516105, A.P

*Corresponding Author E-mail: smrajeshnaik38@gmail.com

Received: 5.07.2018 | Revised: 9.08.2018 | Accepted: 16.08.2018

ABSTRACT

The exploitation of symbiotic feature of AM fungi is one of the efficient approaches to improve crop tolerance to unfavored environment. Generally, vascular plants have been considered as autonomous organisms especially when their performance has been interpreted at the genomic and cellular level. But in reality, vascular plants provide a unique ecological niche for diverse communities of cryptic symbiotic microbes which often contribute multiple benefits, such as enhanced photosynthetic efficiency, nutrient and water use and tolerance to stress. In fact, AM fungi are probably the most ubiquitous soil microbe that can colonize 80% of terrestrial plant species consisted of many fruit crops. Many beneficial effects from mycorrhizal colonization including increased seedling survival, enhanced growth, fruit yield and quality, uniformity of fruit crops, and earlier and increased flowering as well as induced resistance to abiotic and biotic stresses.

Key words: Arbuscular mycorrhizal, Hyphae, Fungi, Fruit Crops.

INTRODUCTION

Arbuscular mycorrhizal fungi (AMF) penetrate the roots of plants to form a mutualistic symbiotic relationship. Mineral nutrients, mainly phosphorus, nitrogen and water are extracted from the soil via the extensive hyphal network and transferred to the plant. Organic carbon compounds are transferred to the AMF in return. They are known to improve plant nutrient uptake, protect plants from pathogens and buffer against adverse environmental conditions, especially drought. Arbuscular mycorrhizal fungi (AMF) can promote rapid increase in plant growth and contribute to better establishment of seedlings when transplanted to the field. In nursery, inoculation of these fungi can improve the plant growth, reducing the time for seedling production and protecting the plants against soil-borne pathogens.

Cite this article: Rajesh Naik, S. M., Lakshmi Naga Nandini, M., Jameel, M.A., Venkataramana, K.T. and Mukundalakshmi, L., Role of Arbuscular Mycorrhiza in Fruit Crops Production, *Int. J. Pure App. Biosci.* **6(5):** 1126-1133 (2018). doi: http://dx.doi.org/10.18782/2320-7051.7088

Contributing to increase the nutrient uptake and plant vigor, the AMF can act as biological control agents by direct or indirect mechanisms. The exploitation of symbiotic feature of AM fungi is one of the efficient approaches to improve crop tolerance to unfavored environment. In fact, AM fungi are probably the most ubiquitous soil microbe that can colonize 80% of terrestrial plant species consisted of many fruit crops. Many beneficial effects from mycorrhizal colonization increased including seedling survival. enhanced growth, fruit yield and quality, uniformity of fruit crops, and earlier and increased flowering as well as induced resistance to abiotic and biotic stresses. The maintenance of a developed and diverse population of AMF and other soil microorganisms is important in achieving sustainable agriculture thus reducing the requirement of such high levels of fertigation. However, products containing AMF are rarely used in commercial agriculture because of (a) difficulties in producing AMF inoculum in large quantities, (b) their variable beneficial effects, and (c) uncertainties in the benefits with added AMF in the presence of resident AMF populations. Substrates such as coir are usually devoid of beneficial microbes such as AMF; thus introducing them into substrate production is more likely to generate benefits.

Involvement of Am Fungi with Plant Development and Fruit Yield:

Plant Development:

Effect of Mycorrhizal Inoculation on Fruit Crops Beneficial effect of mycorrhizal inoculation found in fruit crops. The occurrence of AM fungi studied in Malaysia in two perennial fruits namely, durian (Durio *zibethinus*) and rambutan (Nephelium lappaceum). Higher spores were found in rambutan orchard. It is well known that AM inoculation at early stages of plant development performed better. The micropropagated banana plant inoculated at the beginning of the weaning phase showed response¹⁴. significant growth Various glasshouse and field experiments proved that inoculation with AMF enhanced the growth

and ion uptake in citrus plants, and improved tolerance to drought and salt stress and also the quality of fruit⁵⁴. Moreover, it is reported that the symbiosis of AMF in trifoliate orange enhanced the soluble sugar and leaf chlorophyll content. However, one layer mycorrhizal inoculation was the best for mycorrhization of trifoliate orange⁵³

The symbiotic association of arbuscular mycorrhizal fungi and plant roots is well known. AM fungi impart a variety of benefits upon their host including its increased growth and yield. AM improves plant growth through increased uptake of P, reduction of soil borne diseases, increased plant vigor and survival. Many fruit tree species are dependent on arbuscular mycorrhizal infection for survival and growth. Improved growth of mycorrhizal plants is often related to more efficient uptake of nutrients from soil. Depending plant-AM on host fungus combinations and pedoclimatic conditions, different amounts of P are necessary to obtain growth increments comparable to those observed in mycorrhizal plants.

The inoculation of Glomus macrocarpum, *G*. coledonicum and Acaulospora sp. resulted in increased plant height, stem diameter and biomass in trifoliate and troyer oranges^{50,48}. Inoculation with Gigaspora rosea and Glomus mosseae increased the growth of different grape rootstocks and cultivars than uninoculated plants²². Renaldelli and Mancuso³⁸ reported maximum growth of shoots and leaves in olive plants when inoculated with Glomus mosseae. Vitagliano and Citernesi⁵¹ also reported that the inoculation AM fungi in olive trees resulted in increased lateral root frequency, giving rise to plants with root system consisting of a greater proportion of higher older roots.

The inoculation with *Glomus macrocarpum* increased plant height, root length, number of leaves and dry matter of peach seedlings³. Sharma and Bhutani⁴⁰ also obtained better growth of apple grown in sterilized soils inoculated with endomycorrhizae (AM). Inoculation of glass

house grown apple seedlings with AM species increased leaf area, biomass and chlorophyll content. Mortin *et al.*²⁹ reported that apple seedlings inoculated with different *Glomus* spp. produced tall plants and more biomass than uninoculated plants.

Lovato *et al.*²³ reported that increased stem diameter and plant height in cherry. In strawberry, the combined application of AM fungi at different rates of P had increased total shoot dry weight, fresh weight, leaf area and leaf number compared with application of P alone¹⁹.

Bettio *et al.*⁶ reported that AM fungi positively influenced vegetative growth and nutrients content of peach cv. Aldgrighi. The effect of pre-inoculation with AM fungi on post-transplant growth of peach seedlings in replant and nonreplant soils was also studied ²⁰. The AM fungi inoculation has been reported to improve plant growth and dry matter production are also the cause to increase in leaf area and chlorophyll content of peach⁴.

In pear seedlings, plant height, stem diameter and dry weight of shoot increased significantly with AM inoculation¹³. AM fungal root colonization were significantly increased seedlings growth of apple tree⁵².

Joolka *et al.*¹⁶ also observed highest linear and radial growth, internodal length, leaf number, dry weight of shoot, root/shoot ratio and highest rate of photosynthesis in AM treated pecan seedlings. *Glomus fasciculatum* was significantly increased the height of banana cvs. Dwarf Cavendish and Robusta. The plants inoculated with AM fungi had greener and larger leaves, greater bunch weight and number of fruits per bunch than non-inoculated plants¹¹.

Mazzitelli and Schubert²⁷ observed increased growth in grape vines inoculated with *Glomus caledonium*. Lakshmipathy *et al.*²¹ evaluated the effect of nine different species of AM fungi and reported that *Acaulospora laveis* and *Glomus mosseae* significantly increased plant height, stem girth and total biomass of cashew rootstock compared to uninoculated plants. Porras *et al.*³³ observed that the growth of roots and aerial parts of olive was maximum in inoculated plants than un-inoculated plants. Inoculation with *Glomus intraradices* significantly increased growth of banana tree as compared to non-mycorrhizal plants in promoting plant growth by improving nutrition³². Banana plants inoculated with *G. mosseae* and *G. macrocarpum* had maximum shoot dry weight than non-inoculated plants⁷.

The studies also revealed that the correlation between AM spore populations and shoot extension growth, leaf area and fruit yield. It has been observed that AM spore population and per cent root colonization was positively and significantly correlated with shoot extension growth, leaf area and yield in apple tree⁴¹. A highly significant correlation between AM fungi and growth of mandarin orange was observed³¹. Reena and Bagyaraj³⁷ reported that soil inoculation with arbuscular mycorrhizal fungi increased the number of external hypha and AM spores, root colonization in Tamarindus indica.

Biofertilizers are ready to use live formulates of such beneficial microorganisms, which on application have nitrogen-fixing, phosphorus solubilizing and potassium solubilizing abilities, which facilitate the absorption and utilization of mineral nutrition, leading to promotion of plant growth in rhizosphere of pine tree²⁴. The highest value of shoot length (95.3cm) in guava trees was recorded when fertilized with dual inoculation of AM fungi + Bacillus megaterium over control¹⁵. Similarly, Esitken et al.¹⁰ reported that bacterial treatments including Pseudomonas sp. significantly increased shoot length of sweet cherry. Karlidag et al.¹⁸ reported that root inoculation of plant growth promoting rhizobacteria strains significantly increased shoot length (16.4-29.6%) in apple as compared to control.

The application of phosphate solubilizing bacteria (PSB) significantly increased shoot length in 'Le-Conte' pear¹². Whereas, the application of Pseudomonas sp. increased shoot extension growth in apple². Sharma *et al.*⁴³ reported that the frequency of

ISSN: 2320 - 7051

occurrence and degree of colonization of endomycorrhizae have a direct effect on shoot extension growth of apple tree. Raj and Sharma³⁴ reported that different treatment combinations of *Arbuscular-mycorrhizal* and *Azotobacter chrococcum* resulted in increased shoot length of apple seedlings of solarized soil in comparison to untreated plots. *Mia et al.*²⁸ reported that micropropagated banana plant inoculated with mycorrhizae and rhizobacteria either alone or in combination had significantly higher shoot extension growth than the non-treated control plants.

Fruit Yield:

There has been a tendency for intensification of fruit tree cultivation, mainly in order to obtain the higher yield per unit area. One such possibility for high yield is the use of mycorrhizal fungi by introducing inoculums into a plant root system. It is well documented that AM symbiosis can increase plant gowth and nutrient uptake, improve fruit yield and quality and enhance several abiotic stresses such as low temperature stress, drought, salt stress, etc. The use of biofertilizers in enhancing plant growth and yield has gained momentum in recent years because of higher cost and hazardous effect of chemical fertilizers. Rana and Srivastva³⁵ reported a positive correlation between mycorrhizal spore with fruit vield and root population colonization in litchi trees. Fruit number, mean fruit weight and yield of papaya are also positively correlated²⁶.

The positive influence of mycorrhizal fungi on the growth and yield of plum trees was estimated⁴⁷. Shresta *et al.*⁴⁴ reported that satsuma mandarin tree inoculated with different species of AM fungi have shown an increase in fruit size which culminate into higher yields.

Awasthi *et al.*⁵ reported that a positive correlation between per cent root colonization and AM spore number with fruit yield in Peach orchards of Himachal Pradesh. Spore population and root colonization is also negatively correlated with soil P in apple trees, whereas in peach trees, a positive correlation was found between vesicle number and leaf P content ¹⁷.

Rana and Chandel³⁶ obtained maximum yield, as well as number of runners per plant in Azotobacter inoculated plants. The higher yields in biofertilizers inoculated plants was due to more number of fruits per plant with better fruit size and weights as compared to un-inoculated plants in strawberry. Eswarappa *et al.*¹¹ observed that AM fungi treated plants had greater bunch weight. Obtained maximum number of fruits/plants, highest weight of fruits/plant and maximum fruit size in tomato when inoculated with *Azotobacter* sp.

Arbuscular mycorrhizal fungi influenced the yield and productivity of apple 40 However, the results trees were significantly better in relation to fruit yield when guava plants were inoculated with AM fungi⁴⁵. Dey *et al.*⁸ also reported similar results with the inoculation of Azotobacter and arbuscular mycorrhizae in guava. Aslantas et $al.^2$ reported that the fruit yield of apple crop was significantly higher when plants were inoculated with the Pseudomonas BA-8 and Bacillus OSU-142 of phosphate solubilizing bacteria.

A significant improvement in fruit yield was evident in 5-year old pomegranate plants in field conditions when dual inoculation with *Azotobacter chrococcum* and *Glomus mosseae*¹. Fruit yield was also significantly increased with sole inoculation of *Azotobacter chrococcum* in strawberry seedlings⁴⁹. Recorded an increased yield of banana trees with *Azotobacter* inoculation.

Promotive effects of phosphate solubilizing bacteria (PSB) were found in fruits of olive cv. Chemalali²⁵. Shamseldin et al.³⁹ reported that inoculation with Pseudomonas fluorescence -843 resulted in significant increase in fruit yield of Washington Navel orange. Singh et al. multi-inoculation reported that with Azotobacter + PSB + AM fungi recorded maximum berry yield which was significantly higher over control in strawberry. Osman and El-Rahman³⁰ also recorded significant increase in yield with the application of Azotobacter along with poultry manure in fig trees (Ficus carica L). Biofertilization of guava plants with

AM fungi + *Bacillus megaterium* (PSB) recorded maximum fruit yield $(kg/ha)^{15}$. Whereas, Dutta *et al.*⁹ also recorded significant increase in fruit yield of litchi trees when treated with 150g *Azotobacter* + 100g AM fungi/tree along with farm yard manure (FYM).

CONCLUSION

Current levels of high intensity agriculture are no longer sustainable primarily due to energy costs of N fertilizers and the decreasing supplies of P, along with a decreasing armory of pesticides (due to legislation) and water limitation. Various studies are needed to improve our knowledge of how best to apply and use these beneficial organisms to successfully incorporate them into sustainable commercial cropping systems for fruit crops. With a greater understanding of the application and benefits of these beneficial microbes there is a real possibility for their use in aiding sustainable crop production.

REFERENCES

- Aseri, G. K., Jain, N., Panwar, J., Rao, A. V., Meghwal, P. R., Biofertilizers improve plant growth, fruit yield, nutrition, and metabolism and rhizosphere enzyme activities of pomegranate (*Punica* granatum L.) in Indian Thar Desert. Scientia Horticulturae. 117: 130-135 (2008).
- Aslantas, R., Cakmakei, R., Sahin, F., Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. *Scientia Horticulturae*. **111**: 371-377 (2007).
- 3. Awad, S. M., Response of flame grape transplant to mycorrhizal inoculation and phosphorus fertilization. *Egyptian Journal of Horticulture*. **26(3):** 421-423 (1999).
- Awasthi, R. P., Godara, R. K., Kaith, N. S., Interaction effect of VAM and Azotobacter inoculation on micro-nutrient uptake by peach seedlings. *Horticulture Journal*. 11(2): 1-5 (1998).
- 5. Awasthi, R. P., Godara, R. K., Kaith, N. S., Correlation between VA-mycorrhizae

spore number, root colonization, Azotobacter population and fruit yield of July Elberta peach. *Journal of Hill Research.* **12(1):** 1-4 (1999).

- Josec, B. F., Effeciency of Arbuscular mycorrhizalfungi on growth of aldrighi peach tree rootstock. *Bragantia*. 68(4): 931-940 (2009).
- Declerckut, S., Plenchette, C., Strullu, D. G., Mycorrhizal dependencey of banana (Musa acuminata, AAA group) cultivar. *Plant and soil.* 176(1): 183-187 (1995).
- Dey, P., Rai, M., Kumar, S., Das, V. N. B., Reddy, N. N., Effect of biofertilizer on physico-chemical characteristics of guava (Psidium guajava L.) fruit. *Indian Journal* of Agricultural Sciences. **75(2)**: 95-96 (2005).
- Dutta, P., Kundu, S., Biswas, S., Integrated nutrient management in litchi cv 'Bombai' in new alluvial zone of West Bengal. *Indian Journal of Horticulture*. 67(2): 181-184 (2010).
- Estiken, A., Lutfi, P., Metin, T., Fikrettin, S., Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. *Scientia Horticulturae*. 110: 324-327 (2006).
- Eswarappa, H., Sukhada, M., Gowda, K. N., Mohandas S. Effect of VAM fungi on banana. *Current Research* **31(5-6):** 69-70 (2002).
- Fawzi, M.I.F., Shahin, F. M., Elham, Daood, A., Kandil, E. A., Effect of organic and biofertilizers and magnesium sulphate on growth, yield, chemical composition and fruit quality of "Le-Conte" pear tree. *Nature and Science* 8(12): 273-280 (2010).
- Gardiner, D. T., Christensen, N. W., Pear seedling responses to phosphorus, fumigation and mycorrhizal inoculation. *Journal of Horticultural Science*. 66: 775-780 (1991).
- Grant, C., Bittman, S., Montreal, M., Plenchette, C., Morel, C., Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. *Can. J. Plant Sci.* 85: 3-14 (2005).

- 15. Ibrahim, H. I. M., Zaglol, M. M. A., Hammad, A. M. M., Response of Baldy guava trees cultivated in sandy calcareous soil to biofertilization with phosphate dissolving bacteria and /or VAM fungi. *Journal of American Science* 6(9): 399-404 (2010).
- Joolka, N. K., Singh, R. R., Sharma, M. K., Influence of biofertilizers, GA3 and their combinations on the growth of pecan seedlings. *Indian Journal of Horticulture*. 61(3): 226-228 (2004).
- 17. Karagiannidis, N., Velmis, D., Mycorrhizal status in an orchard area in Western Macedonia (Greece). *Agrochimica*. 44(3-4): 151-159 (2000).
- Karlidag, H., Esitkenb, A., Turanc, M., Sahind, F., Effects of root colonization of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. *Scientia Horticulturae*. **114(1)**: 16-20 (2007).
- Khanizadeh, S., Hamel, C., Klanmehr, H., Buszard, D., Smith, D. L., Effect of three vesicular-arbuscular mycorrhizae species and phosphorus on reproductive and vegetative growth of three strawberry cultivars. *Journal of Plant Nutrition*. 18(6): 1073-1079 (1995).
- Kipkoriony, L. R., Fusao, M., Peach seedling growth in replant and non-replant soils after inoculation with arbuscular mycorrhizal fungi. *Soil Biology and Biochemistry*. 38: 2536-2542 (2006).
- Lakshmipathy, R., Balakrishna, A. N., Bagyaraj, D. J., Kumar, D. P., Symbiotic response of cashew root stocks to different VA mycorrhizal fungi. *Cashew* 14(3): 20-24 (2002).
- 22. Linderman, R. G., Davis, E. A., Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. *American Journal of Enology and Viticulture*. **52(1):** 8-11 (2001).
- Lovato, P. E., Hammatt, N., Gianinazzi-Pearson, V., Gianinazzi, S., Mycorrhization of micropropagated

mature wild cherry and common ash. Agriculture Science in Finland **3(3):** 297-302 (1994).

- Lu, C., Huang, B., Isolation and characterization of Azotobacter from pine rhizosphere. *Africian Journal of Microbiology Research.* 4(12): 1299-1306 (2010).
- 25. Maksoud, M. A., Saleh, M. A., El-Sharma, M. S., Fouad, A. A., The beneficial effect of biofertilizers and antioxidants on olive trees under calcareous soil conditions. *World Journal of Agricultural Sciences* 5(3): 350-352 (2009).
- 26. Manjunatha, V. G., Patil, C. P., Swamy, G. S. K., Patil, P. B., Effect of different VAM fungi and phosphorus levels on yield and yield components of papaya. Karnataka *Journal of Agricultural Sciences* 15(2): 336-342 (2002).
- Mazzitelli, M., Schubert, A., Effect of several VAM endophytes and artificial substrate on in vitro propagated Vitis berlandieri x V. rupestris. *Agriculture Ecosystem Environment*. 29(1-4): 289-293 (1990).
- Mia, M. A., Baset, Shamsuddin, Z. H., Mahmood, M., Use of plant growth promoting bacteria in banana: A new insight for sustainable banana production. *International Journal of Agriculture and Biology*. 12(3): 458-467 (2010).
- 29. Mortin, F., Fortin, J. A., Hamel, C., Granger, R. L., Smith, D. L., Apple rootstock response to VA-mycorrhizal fungi in a high P soil. *Journal of American Society of Horticultural Science*. **119(3)**: 578-583 (1994).
- Osman, S. M., Abd El-rhman, I. E., Effect of organic and Bio N-fertilization on growth, productivity of fig tree (Ficus carica, L.). *Research Journal of Agriculture and Biological Sciences*. 6(3): 319-328 (2010).
- Panja, B. N., Chaudhuri, S., Exploitation of soil arbuscular mycorrhizal potential for AM-dependent mandarin orange plants by the cropping with mycotropic crops. *Applied Soil Ecology*. 26(3): 249-255 (2004).

Copyright © Sept.-Oct., 2018; IJPAB

ISSN: 2320 - 7051

Rajesh Naik *et al*

- 32. Pinochet, J., Fernandez, C., Jaizme, M., Tenoury, P., De Jaizme, C. M., Micropropagated banana infected with Meloidogyne javanica response of Glomus intraradica and phosphorus. *Horticulture Science* 32(1): 101-103 (1997).
- Porras Soriano, A., Domenech Menor, B., Castillo Rubio, J., Sorian Martin, M. L., Porras Piedra, A., Influence of vesicular arbuscular mycorrhizae on growth of mist propagated olive cuttings. *Olivae*. 92: 33-37 (2002).
- 34. Raj, H., Sharma, S. D., Integration of soil solarization and chemical sterilization with beneficial microorganisms for the control of white root rot and growth of nursery apple. *Scientia Horticulturae*. **119**: 126-131 (2009).
- 35. Rana, B. S., Srivastava, R. P., Distribution of endomycorrhizal spores in the rhizosphere of litchi as affected by fertilizer application. *Progressive Horticulture*. **16:** 133-134 (1984).
- 36. Rana, R. K., Chandel, J. S., Effect of biofertilizers and nitrogen on growth, yield and fruit quality of strawberry. *Progressive Horticulture* 35(1): 25-30 (2003).
- 37. Reena, J., Bagyaraj, D. J., Growth stimulation of Tamarindus indica by selected VA-mycorrhizal fungi. World Journal of Microbiology and Biotechnology. 6(1): 59-63 (1990).
- Renaldelli, E., Mancuso, S., Response of young mycorrhizal and nonmycorrhizal plants of olive tree to saline condition. Short term electrophysiological and long term vegetative salt effects. *Agrochimica*. 44(3-4): 151-159 (1996).
- 39. Shamseldin, A., Mohamed, H., EI-Sheikh, Hassan, H. A. S., Kabeil, S. S., Microbial bio-fertilization approaches to improve yield of quality of Washington Navel orange and reducing the survival of nematode in the soil. *Journal of the American Science*. 6(12): 264-271 (2010).
- 40. Sharma, S. D., Bhutani, V. P., Response of apple seedling to VAM, Azotobacter and inorganic fertilizers. *Horticulture Journal*. 11(1): 1-8 (1998).

- Sharma, S. D., Bhutani, V. P., Awasthi, R. P., Effect of vesicular-arbuscular mycorrhizae and P on leaf and soil mineral nutrient status of apple seedlings. *Indian Journal of Horticulture*. 59(2): 140-144 (2002).
- Sharma, S. D., Bhutani, V. P., Dohroo, N. P., Occurrence of VAM fungi under old apple orchards. *Journal of Indian Society* of Soil Science. 46(1): 143-144 (1998).
- Sharma, S. D., Sharma, N., Sharma, C. L., Sood, R., Singh, R. P., Studies on correlation between endomycorrhiza and Azotobacter population with growth, yield and soil nutrient status of apple (M. domestica Borkh.) orchards in H.P. Acta Horticulturae. 696: 312-318 (2005).
- 44. Shrestha, Y. H., Ishii, T., Matsumoto, I., Kadoya, K., Effect of vesicular arbuscular mycorrhizal fungi on satsuma mandarin tree growth and water stress tolerance, fruit development and fruit quality. *Journal of Japanese Society for Horticulture Science*. **64(4):** 801-807 (1996).
- 45. Alok, S., Singh, S. P., Response of banana to vesicular arbuscular mycorrhizae and varied levels of inorganic fertilizers. *Indian Journal of Horticulture* 61(2): 109-113 (2004).
- 46. Singh, S. R., Zargar, M. Y., Singh, U., Ishaq, M., Influence of bio-inoculants and inorganic fertilizers on yield, nutrient balance, microbial dynamics and quality of strawberry (Fragaria x ananassa) under rainfed conditions of Kashmir valley. *Indian Journal of Agricultural Sciences* 80(4): 275-281 (2010).
- 47. Slawomir, S., Aleksander, S., The influence of mycorrhizal fungi on the growth and yield of plum and sour cherry trees. *Journal of Fruit and Ornamental Plant Research* **18(2):** 71-77 (2010).
- 48. Souza, PV D-de., Souza de, P. V. D., Effect of arbuscular mycorrhizae and gibberellic acid interactions on vegetative growth of Carrizo citrange seedlings. *Cienicia Rural* **30(5):** 783-787 (2000).

Copyright © Sept.-Oct., 2018; IJPAB

- Umar, I., Wali, V. K., Kher, R., Sharma, A., Impact of integrated nutrient management on strawberry yield and soil nutrient status. *Applied Biological Research.* 10: 22-25 (2008).
- Vinayak, K., Bagyaraj, D. J., Vesicular arbuscular mycorrhizae screened in Troyer citrange. *Biology and Fertility of soils*. 9(4): 311-314 (1990).
- 51. Vitagliano, C., Citernesi, A. S., Plant growth of Olea europaea L. as influenced by arbuscular mycorrhizal fungi. *Acta Horticulturae* **474:** 357-361 (1999).
- 52. Wang, C. M., Han ZH, Li, X. L., Xu, X. F., Effects of phosphorus levels and VA

mycorrhizae on growth and nutrient contents of apple seedlings. *Acta Horticulturae Sinica*. **28(1):** 1-6 (2001).

- 53. Wu, Q. S., Zou, Y. N., Evaluating Effectiveness of Four Inoculation Methods with Arbuscular Mycorrhizal Fungi on Trifoliate Orange Seedlings. *Int. J Agric. Biol.* 14: 266-270 (2012).
- 54. Wu, Q. S., Zou, Y. N., He, X. H., Exogenous putrescine, not spermine or spermidine, enhances root mycorrhizal development and plant growth of trifoliate orange (Poncirus trifoliata) seedlings. *Int. J. Agric. Biol.*, **12:** 576-580 (2010).